CLIENT-PROVEN ADVANCED ANALYTICS, DATA

MINING & PREDICTIVE MODELING TOOLS FOR

CUSTOMER BEHAVIORS

Cox Associates offers a uniquely powerful, client-proven set of advanced analytics, data mining, and predictive modeling tools for predicting and optimizing customer behaviors. Compared to traditional market segmentation, our approach identifies specific combinations of actions that have the greatest predicted impact on customer purchasing behaviors in both the short run and the longer term.
Cox Associates Consulting

RECENT

APPLICATION

More Accurate Churn Prediction:

We used a new Predictive

Clustering method to predict

which customers are most likely to

churn based on recent product-

purchase patterns, account age and

size, and demographics. The

predictions were far more accurate

than those from previous (logistic

regression, neural net, and

business rule) models, achieving

more than twice the lift in

predicting the 10% of customers

who were most likely to churn.

Better Targeting and Revenue

Delivery:

Cox Associates' Predictive

Clustering technology was used to

quantify the probability that each

of several million customers

would purchase each of a

company's products (as well as

selected product combinations) in

the next 3 months. More accurate

targeting based on these

predictions quickly led to a 15%

increase in revenues in an in-

market trial.

Tracking Impacts of Advertising:

We applied the Predictive

Clustering methodology in

conjunction with survey data on ad

awareness and Competitrack data

on competitor advertising to

quantify the impact on customer

loyalty and purchasing habits of

individual advertising campaigns

in specific markets and to identify

strategies for more effective

advertising.

Service Improvement Planning: Predictive Clustering was also used to quantify the total impact on customer loyalty and revenues of alternative proposed service improvements. The resulting causal model was based in part on Customer Satisfaction survey data validated and refined using several years of actual customer behavior data. In contrast to previous, overly optimistic and insufficiently precise regression models, the Cox Associates predictive models clearly distinguished he expected causal impacts of changes in service metrics on customer behaviors.    
COX ASSOCIATES CONSULTING | DENVER | Tel: 303.388.1778
Superior Business Decisions Through Better Data Analysis
Home Services News Contact
CUSTOMER DATA MINING & PREDICTIVE MODELING Compared to tradational market segmentation, our approach identifies specific combinations of actions that have the greatest predicted impact on customer purchasing behaviors in both the short run and the longer term.
Business Simulation: Our Predictive Clustering technology has been included in business simulation models that provide fully integrated models of marketing, engineering, and operations and their financial impacts in new businesses. Such models include high-level models of subscriber purchasing behavior; predicted effects of pricing, advertising, and competition on market share and average revenue per subscriber; and relative costs and performance associated with different network engineering choices and build schedules. Reduce by over 50% the time to create and run financial and strategic scenarios. Improve planning validity and consistency. Help planners to focus on what can be controlled instead of on what has been assumed. Cox Associates has developed business simulation models for the wireless, cable, data, and multimedia (bundled telephony, cable, and data service) industries.  Examples of business simulation software models developed since 1996 include the following: 1.Multimedia demand and market penetration forecasting model 2.Telephony growth-product introduction strategy model 3.Wireless Switch and Interconnect planning model 4.Cable customer acquisition, attrition and retention model In each case, the main outputs included multi-year revenue projections and uncertainty analyses showing how the probable value (NPV) of a business depends on its structure, price plans, timing and locations of new service and network plant rollouts, changing composition of subscriber or customer demographics, service performance indicators, and competitor and regulatory actions. Cox Associates' Business Simulation Models are distinguished from competing models by their use of well-validated customer behavior models based on extensive data.  Most competing models rely on speculative assumptions about how customers (and competitors) are likely to respond to changes. Our method is based on the following principles: 1.  All revenue projections are driven by detailed modeling of customer purchasing, usage, and attrition decisions in response to company and competitor offerings. 2.  Service offerings and service-level performance are linked to investments in network infrastructure, operations support, and staffing. These decisions also flow into the cost side of the financial model. 3.  Competitor actions are modeled by simple behavioral rules that incorporate typical behavioral strategies. Sophisticated (game-theory and A-life) modeling strategies have been investigated by our researchers, but simple behavioral rules appear to be more practical and realistic. 4.  Regulatory changes, technology innovations, mergers, and similar one-time events are modeled by stochastic binary indicator variables. 5.  The preceding elements are integrated and use to clarify our clients' understanding of their business through several iterations of (a) Formal influence diagram structuring and quantification, leading to useful pictures of the business; (b) Statistical estimation of key empirical relations (e.g., for costs and demand functions) from market and engineering data. We can supply most starting values based on extensive industry experience and data when this is needed to make a warm start. (c) Simulation of customer transitions among behaviors over time, with links to resulting financial outputs. (d) Model validation, refinement, and communication, to maximize its value to planners and strategists. We have applied this modeling approach successfully to over a dozen businesses in the U.S. and abroad, delivering interactive "electronic business cases" that add substantial insight and value to static paper displays. Our business simulation models allow business planners and strategists to experiment with different assumptions and scenarios, to gain insights into effective competitive and technology strategies, and to examine the sensitivity of business value and viability to both strategic and tactical decisions. In addition to hypothetical and what-if capabilities, we bring special value to this area by providing the results from data mining and hard data on customer behaviors and survey responses in wireless, data, cable, and bundled service markets. Customer Behavior Models: Our customer behavior modeling tools use "machine learning" techniques from artificial intelligence and computational statistics to predict probable customer behavior in response to different product and service offerings, based on demographics, past purchases, and experiences. Compared to traditional market segmentation, our technique identifies specific combinations of actions that have the greatest predicted impact on customer purchasing behaviors in both the short run and the longer term. IMPACT: Reduce customer churn and retention costs by over 20% by allocating resources to factors that most affect loyalty.
White papers